Kestrel 5700 Elite-Accuracy $1^{\text {st }}$ Guidance

The Accuracy 1 st features available in the Kestrel 5700 Elite and the Kestrel 5700 X support the expert instruction and methods of Accuracy 1st training. The default settings and various calculations accessible within the Accuracy 1st feature set are intended to provide shooters with fast data for rapid engagement of targets.

Firmware version 1.35 introduced the Accuracy 1 st menu set in the Kestrel Elite or Kestrel 5700 X units.

Requirements for using the Accuracy $1^{\text {st }}$ option:

- Must have a Kestrel Elite or Kestrel 5700 X with firmware version 1.35 or higher
- Gun Profile Elevation and Windage units must be in MIL
- Environment must be set to locked. It is advisable to do a capture before locking.

For more information on any of these topics please check our videos on Youtube.

Kestrel 5700 Elite - Accuracy 1 st Accessing Accuracy 1 st Menu

E $3.60 U_{\text {MIL }} \mid A$
W $0.52 / 1.17 R$
To1
Wind...
Win

From Main Menu Select the Gear button to enter Main Menu.

Scroll down to System and press center button.

Scroll down Accuracy $1^{\text {st }}$ and use right or left arrow to turn On. Then use Gear button to exit back to Main Ballistic screen.

Target Card.
Accuracy 1st...
Under Target Card will now be a new menu item called Accuracy $1^{\text {st. }}$.

Enter this menu option and you should see the Accuracy $1^{\text {st }}$ options.

Tip 1: If you cannot enter the Accuracy $1^{\text {st }}$ menu (i.e., it is underlined), then your Environment is not locked.

Tip 2: If you try to calculate an Accuracy $1^{\text {st }}$ value and see N/A, then you gun profile's units are not set to MILS.

Kestrel 5700 Elite-Accuracy $1^{\text {st }}$ Quick Wind (QkWind)

Quick Wind is useful when you need to take a shot quickly and may not have time to setup a full wind capture. The calculated Quick Wind value allows the shooter to utilize his range for his windage hold.

NOTE: Before calculating any of these values, zeroing your gun and any truing should have been done prior. Also an environmental capture should have been recently done and then environment locked.

Example: After calculating your Quick wind, you get a value of 4 mph .
This value tells you that when you have a 4 mph wind: (Your Range $/ 1000$) will be your windage hold. This can then be used in multiples of the same wind. This estimation works best in the supersonic region.

Range	$\mathbf{4} \mathbf{~ M P H}$ Wind	$\mathbf{8} \mathbf{~ M P H}$ Wind	$\mathbf{1 2}$ MPH Wind
400 Yards	0.4 mil hold	0.8 mil hold	1.2 mil hold
500 Yards	0.5 mil hold	1.0 mil hold	1.5 mil hold
600 Yards	0.6 mil hold	1.2 mil hold	1.8 mil hold
700 Yards	0.7 mil hold	1.4 mil hold	2.1 mil hold
800 Yards	0.8 mil hold	1.6 mil hold	2.4 mil hold

Kestrel 5700 Elite-Accuracy $1^{\text {st }}$ Quick Wind (QkWind)

Kestrel Example: Since we found out our Quick wind value was 4 mph, we plug that in as the w1 value on the Kestrel and set the WD at 3 oclock (or 90° ocock) You can see that the approximation works up until a certain range.

Rng Ely dwndil	
500 2.39U 0.47R	With rounding, holds are very
$7004.42 \mathrm{U} \quad 0.71 \mathrm{R}$	close to range / 1000.
8005.64 U 0.85R	

Rng	Ely	Whdi
900	7.02 U	1.00 R
1000	8.59 U	1.16 R
1100	10.39 u	1.34 R
1200	12.45 U	1.54 R

However at 900 yards, we see a discrepancy. This is called a density altitude correction. From this point onward, we will need to remember to add 0.1 mil.

At 1100 the DA correction is 0.2 mils and at 1200 it is 0.3 mils.
So we need to add those and do so for X mph wind.

Kestrel 5700 Elite - Accuracy $1^{\text {st }}$ Wind Dot (WhoDot)

Wind Dot values can only be used with the Tremor series reticles.: The value calculated relates to the wind needed for the dots shown on the reticle.

Example: After calculating your Wind Dot, you get a value of 3 mph. Each dot from the Y axis now represents 3 mph of wind: So locate the horizontal line of your elevation hold and count the dots outward based on the wind felt at the time of shot. : Below suppose our elevation hold is 4 mils, we can then judge the windage based on the dots shown, in multiples of our Wind Dot value.

Kestrel 5700 Elite-Accuracy 1 st Speed Drop (SpdDrp)

Speed Drop is a good way to get an estimation on your elevation hold based on the range in which you are shooting. The Kestrel will provide you with a range in which this estimation should be valid.

Enter the Accy1st menu option and select SpdDrp.

Press the center button to adjust accuracy to either + /0.1 or 0.2 mils.

Speed Drop	
Rng Min...	--- -
Rng Max...	---
Calculate	Go
bexit	adjust

Scroll down to the bottom and select Calculate.

Speed Drop	
Rng Min...	218 ma
Rng Max..	710 m
Calculate	Go
哠exit	a adjust

The range in which this estimation is accurate will show up.

Speed Drop	
SpdDrp\#...	1.9 mil
Rng Min...	218 m
Rng Max...	710 mv
roxit	4padjust

The Speed Drop hold will show up at the top.

In this example, we can estimate to subtract 1.9 mils from our target range distance to get a close approximation to our hold. This would be valid between the range of 218 m and 710 m .

The elevation hold would be (Range/100) - Speed Drop.
The next slide will show a full example of how this is applied.

Round this number to the nearest tenth

Kestrel 5700 Elite-Accuracy 1 st Speed Drop (SpdDrp)

Speed Drop Example:

Speed Drop $=1.9 \mathrm{mils}$
Range Min $\because 218 \mathrm{~m} \%$ (This is the minimum range this estimation works)
Range Max $=710 \mathrm{~m}$ (This is the maximum range this estimation works)

If shooting a target at 300 m , we can guess an elevation hold: (Range $/ 100$) \div Speed Drop $=$ Elev Hold

$$
(300 / 100) \div 1.9=1: 1 \text { mils }(++-2 \text { mils })
$$

If we look at the Range Card on the Kestrel, we can see how close we are between these ranges:

Pro Tip: If you dial your scope down 1.9 mils, then you can just use your range (divided by 100) as your elevation hold.

Kestrel 5700 Elite－Accuracy 1 st Aerodynamic Jump（AJ）

Aerodynamic Jump in the Accuracy 1 st menu will provide you with an estimate of how much AJ to apply to a target at ANY range based on a set wind speed．

ACCUR	T
SpdDrp．．．	－－－\triangle
$\mathrm{A} J=.1 \mathrm{mil}$ ．．．	
12＂Drill．．．	
解exit	－

Enter the Accy1st menu option and select AJ＝． 1 mil．

AJ＝． 1 mil at
what wind
speed？
AJ $=.1$ mil．．．
Calculate
猚exit

Scroll down to calculate and press the center button．

$\mathrm{Ad}=.1 \mathrm{mil}$	
what wind	speed？
AJ＝． 1 mil．．．	8 mph
Ealculaic	Go
管exit	

The wind speed shown represents 0.1 mil of AJ at any range．

This 0.1 mil would then be added（left wind）or subtracted （right wind）to the elevation hold based on the wind value or a factor of this wind value． See table for example using 8 mph．

Range	4 MPH Wind	8 MPi Wind	16 MPH wind
400 Yards	Add 0.05 mil	Add 0.1 mil	Add 0.2 mil
500 Yards	Add 0.05 mil	Add 0.1 mil	Add 0.2 mil
600 Yards	Add 0.05 mil	Add 0.1 mil	Add 0.2 mil
700 Yards	Add 0.05 mil	Add 0.1 mil	Add 0.2 mil
800 Yards	Add 0.05 mil	Add 0.1 mil	Add 0.2 mil

Note：Chart shows values for a left wind．Subtract these values if wind is coming from your right．
Z^{\prime} Kestrel
Kestrel 5700 Elite-Accuracy 1 st
Ballistics
12 Inch Drill

Please contact Accuracy 1 st if you would like more information on this topic.

